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Abstract

The drawing of Venn diagrams have traditionally served as an aid to analyze the characteristics exhibited by the diagram
and its underlying Venn graph. Little attention has hitherto been given to the presentation, construction and way in which
a Venn diagram conveys information. We present a new algorithm for the construction and layout of a Venn diagram based
on an incremental technique. The algorithm constructs the Venn diagram by incrementally deriving new intersections from
previously placed ones on a grid. We also propose criteria which can be applied to analyze a Venn diagram’s drawing and
layout. Our algorithm aims to generate an aesthetically pleasing layout by satisfying the proposed criteria.
Keywords: Venn Diagrams, Graph Drawing, Layout
Computing Review Categories: F.2.2, G.2.2

1 Introduction

Many computerized design and modeling systems are
based on Venn diagrams [6]. Software engineering appli-
cations, such as STATEMATE [5], make use of higraphs to
model statecharts. These higraphs are extended from Venn
diagrams [7] by introducing a hierarchical structure. Fig-
ure 1 is an illustration of a simple higraph
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Figure 1: A simple Higraph

It is important that efficient algorithms to generate
Venn diagrams are found given the application of visual
formalisms based on them. Research has for the most
part focussed on the graph theoretic properties exhibited
by Venn diagrams and their associated Venn graphs [3, 6]
or their application to model other graph structures such as
hypergraphs [8].

We propose an algorithm for the construction and lay-
out of Venn diagrams. The majority of criteria used to eval-
uate graph drawings cannot be applied to Venn diagrams in
general. We formulate and propose a set of criteria that can
be applied to analyze the drawing of a Venn diagram. Our
algorithm aims at satisfying the proposed criteria to gener-
ate an aesthetically pleasing layout.

Section 2 presents an overview of different techniques
that can be applied in the construction of Venn diagrams.
Section 3.1 discusses some preliminary definitions be-
fore the algorithm is presented in Section 3.2. Section 4
presents a proof outline for our algorithm and discusses the
new criteria for evaluating Venn diagrams. We then apply
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Figure 2: A 3-Venn diagram constructed with the zigzag
function containing 3 curves and 8 regions

the criteria in analyzing the drawings and layouts produced
by our algorithm. We conclude our discussion in Section 5
by presenting a summary.

2 Techniques for Constructing Venn
Diagrams

Algorithms such as the zigzag function [4] can be used to
construct a general Venn diagram. Figure 2 is an example
of a 3-Venn diagram constructed with this function.

The regions in the diagram are labelled by using a bi-
nary representation to describe the inclusion of sets for a
given region. Each set is assigned a unique binary digit
(bit) and the regions are labelled in decimal for simplicity.
For example, the region labelled as 5 in Figure 2 describes
the intersection of sets 1 and 4.

The zigzag function confines the Venn diagram within
a unit square making it difficult to interpret the diagram, es-
pecially when higher order diagrams are constructed. Fig-
ure 3 shows the individual regions for each set of the 3-
Venn diagram after they were extracted from the drawing
in Figure 2. The construction of the individual regions
for higher order diagrams will require many computations

SART / SACJ, No 26, 2000 53



1

2

4

Figure 3: Individual regions extracted from a 3-Venn dia-
gram constructed with the zigzag function

Figure 4: Boyd’s construction for a 5-Venn diagram using
rectangles

to determine the various points at which regions intersect
with one another.

Various other techniques exist for the construction of
Venn diagrams, often imposing a limit on the size of the
Venn diagram. Boyd’s construction for a 5-Venn diagram
using rectangles is illustrated in Figure 4 [2]. Confin-
ing Venn diagrams to specific geometric shapes effectively
limits the possible constructions and requires that other
means are found to extend the drawing to a higher order
diagram. These extensions often break the symmetry in-
troduced by the geometric shapes. Figure 5 shows a con-
struction known as a Clown Venn diagram. The drawing
is primarily composed of ellipses [6]. The fifth set is con-
structed from an irregular shape suggesting that a complex
algorithm was used to generate the diagram. The rectan-
gular shape of the fifth set breaks the symmetry originally
introduced by the ellipses.

3 The Incremental Construction Al-
gorithm

The Incremental Construction algorithm constructs a Venn
diagram on a two- dimensional grid representing the plane.
A label on the grid either describes a region containing a
number of intersections of the Venn diagram or the exterior
plane.

A construction which we call a Tri is initially placed
on the grid and forms the basis for the layout of the Venn
diagram. The Tri contains n(n+1)

2 intersections of the n-
Venn diagram. The remaining intersections are then de-
rived from the Tri and placed on the grid. Various func-
tions are used throughout the construction algorithm. An
overview of these functions will be presented before ex-
amining the construction algorithm itself. Various other
algorithms are used during and after the construction of
the Venn diagram. These algorithms are presented after

Figure 5: The Clown Venn diagram construction

the main algorithm.

3.1 Preliminary Definitions

A two-dimensional, infinite square grid G is used for the
construction and layout of the Venn diagram and repre-
sents the plane. A position on the grid is given by G[ j; i]
such that 0� i; j �Gs�1 where Gs is the maximum num-
ber of rows and columns on the grid and j and i denote
the row and column respectively. Positions on the grid are
numbered from 0 to Gs � 1 row-wise, starting at the top
left corner. The label contained at a specific position on
the grid is given by l = G[ j; i] such that 0 � l � 2n � 1.
If G[ j; i] = 0, the label is a reference to the exterior plane,
otherwise it describes a region of the Venn diagram con-
taining one or more intersections. Initially all positions in
G reference the exterior plane so that the following condi-
tion holds after the initialization of G:

G[ j; i] = 0 for 0� j; i � Gs�1:

Regions are labelled with integer values and each set in
the Venn diagram is associated with a unique binary digit
(bit). Each bit in the binary representation of a label that
is set to 1 describes the inclusion of its associated set in
that region. For example, the label 9(10012) describes the
intersection of two sets since bit 0 and 3 are set to 1. For
simplicity we will map each bit to an alphabetical character
so that 1(12)!A, 2(102)!B, 4(1002)!C, etc. A region
labelled as 3 has a binary representation of 112 and will be
referred to as AB.

The number of sets describing an intersection is given
by the composition function C(x) where x is the label of
the region on the grid and 0� x � 2n�1. We define C(x)
as the number of 1s in the binary representation of x. For
example, if G[ j; i] = 5 then C(G[ j; i]) = 2 since 510 = 1012.

The label set L is used to keep track of labels that must
still be placed on the grid. Initially L = fl 2N j 1 � l �
2n�1g for an n-Venn diagram. Whenever a label is placed
on the grid it is removed from L . The construction algo-
rithm terminates when L = /0.

We define

Max(L) =

�
0 if L= /0
l if L 6= /0

where l is the least element of L such that C(l) is maximal
on L . For example, if L= f3;5;7;9g, then Max = 7.

Finally, we define ^ and _ to be the bitwise AND and
OR operators respectively. For example, 13^12 = 12 and
7_9 = 15.
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3.2 Constructing the Venn Diagram

We now present the main algorithm for constructing the
Venn diagram. An example is presented in Section 3.3 to
illustrate how the algorithm works.

Algorithm 1

Algorithm Construct
Input n, the size of the Venn diagram
Output A grid G containing the Venn diagram

1. Initialize L and the grid.

2. Construct the initial layout:

(a) Let i = n

(b) For j = 1 : : :n Do:

i. G[ j; i] = 2 j�1

ii. L = L �f2 j�1g

iii. i = i�1

3. Construct the Tri:
For i = 1 : : :Gs�2 and j = 1 : : :Gs�2 Do:

If G[ j�1; i] 6= 0 and G[ j; i�1] 6= 0 Then

(a) G[ j; i] = G[ j�1; i]_G[ j; i�1]

(b) L = L�fG[ j; i]g

4. While L 6= /0 Do

(a) Let l = Max and c =C(l)

(b) For j = 1 : : :Gs�2 and i = 1 : : :Gs�2 and
l 6= 0 Do:
If IsValid(j,i,l) Then

i. L = L �flg

ii. G[ j; i] = l

iii. l = 0

(c) For j = 1 : : :Gs�2 and i = 1 : : :Gs�2 Do:
If G[ j; i] = 0 and G[ j�1; i] 6= 0 and G[ j; i�1] 6= 0
Then

i. G[ j; i] = G[ j�1; i]_G[ j; i�1]

ii. If G[ j; i] 2 L Then L = L �fG[ j; i]g

Algorithm 2

Algorithm IsValid
Input ( j; i) is a coordinate pair on the grid. l is the label
that must be placed.
Output The function returns TRUE if the position is valid
for placing l or FALSE otherwise.

1. Let Valid = FALSE

2. Let v = G[ j; i�1]_G[ j; i+1]_G[ j�1; i]_G[ j+1; i]

3. If v^ l = l and G[ j; i] = 0 Then Valid = TRUE

4. Return Valid
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Figure 6: Initial construction for a 5-Venn diagram

Algorithm 3

Algorithm Optimize
Input A grid G containing a layout of a Venn-Diagram
Output A grid G0 containing an optimized layout of G
For j = Gs�2 : : :2 and i = Gs�2 : : :2 Do
If G[ j; i] = 2n�1 Then

1. Let G[ j; i] = 0

2. If not (IsValid ( j�1; i;G[ j�1; i]) and
IsValid ( j+1; i;G[ j+1; i]) and
IsValid ( j; i�1;G[ j; i�1]) and
IsValid ( j; i+1;G[ j; i+1]))
then G[ j; i] = 2n�1

3.3 Illustrative Example: A 5-Venn Diagram

We now present an example to illustrate how the algorithm
works. A 5-Venn diagram will be constructed on a grid
with Gs = 25. Both G and L are initialized in step 1 so that
G contains only 0s and L = f1;2; : : : ;31g.

The initial layout is made in step 2b to form a diagonal
construction on the grid. The first label will be placed at
G[1;5], the second at G[2;4] and so on until j = 5. After
the completion of step 2b the grid contains the diagonal
construction illustrated in Figure 6.

Step 3 now proceeds by constructing the Tri from the
diagonal. The Tri is constructed by deriving new labels
from previously placed labels. A new label at G[ j; i] is
derived by examining the labels at G[ j� 1; i] and G[ j; i�
1]. The first position in our example where a new label can
be derived is located at G[2;5]. The algorithm examines
the labels at G[1;5] and G[2;4] (containing the values 1
and 2 respectively) and combines them to form a new label
at G[2;5] by computing their bitwise OR. The process is
repeated for each position on the grid where G[ j�1; i] 6= 0
and G[ j; i� 1] 6= 0 and is illustrated in Figure 7. Figure 8
shows the completed Tri.

We will now examine the first few iterations of step 4
which will place the remaining labels in L on the grid to
complete the Venn diagram. When step 4 is reached, L =
f5;9;10;11;13;17;18;19;20;21;22;23;24;25;26;27;29g.
After step 4a has been executed, l = 23 and c = 4. Step 4b
now searches through the grid to locate a valid position
for placing l. When a valid position is found for l it is
removed from L , G[ j; i] = l and l = 0. The first position
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Figure 7: Construction of the Tri. New labels are derived
by examining the labels located to the top and left of the
grid position under investigation
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Figure 8: Completed Tri for a 5-Venn diagram

that will be located during step 4b in our example is
G[5;6]. Figure 9 shows the grid after placing l. Since
l = 0, step 4b now terminates and the algorithm proceeds
to step 4c.

Step 4c searches the grid and attempts to derive new
intersections by applying the same method used for the
construction of the Tri in step 3. No new labels will be
generated at this stage and the algorithm returns to step 4a.
Upon the second iteration, l = 27, c = 4 and the first valid
position is located at G[4;6]. Figures 10 and 11 show the
grid after the completion of step 4b during the second and
fifth iteration of step 4 respectively.

During the fifth iteration step 4c will generate two la-
bels (G[4;7] = 31 and G[5;7] = 31). Step 4c will in most
cases generate a label equal to 2n�1. This is attributed to
the fact that when step 4c is executed the labels at G[ j�1; i]
and G[ j; i� 1] have a high composition and by combin-
ing them, a label with an even higher composition will
be formed. It is acceptable for step 4c to generate labels
that have already been placed. However, a special test is
included to ensure that the new label is removed from L
should G[ j; i] 2 L .

Step 4 continues until L = /0. The completed 5-Venn
diagram is illustrated in Figure 12. The final diagram can
now be optimized to reduce its area. Algorithm 3 attempts
to remove redundant occurrences of labels equal to 2 n�1.
Since the Venn diagram is constructed from the top left
corner of the grid and advances towards the bottom right
corner, the optimization algorithm starts at the bottom right
corner and moves toward the top left corner.

When a grid position G[ j; i] = 2n�1 is encountered it
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Figure 9: The grid after the first iteration of step 4b
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Figure 10: The grid after the second iteration of step 4b
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Figure 11: The grid after the fifth iteration of step 4b
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Figure 12: The completed 5-Venn diagram
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Figure 13: Optimized 5-Venn diagram after applying Al-
gorithm 3 to the Venn diagram in Figure 12

is set to 0 in step 1. The positions around G[ j; i] are then
tested in step 2 by using Algorithm 2 to determine if they
are still valid given the removal of the label at G[ j; i]. If
the surrounding labels are no longer valid then G[ j; i] is set
to 2n�1 again. Figure 13 shows the 5-Venn diagram after
applying Algorithm 3.

It is important to note that there are two disjoint areas
labelled ABCDE in Figure 12. Although this is perhaps
an undesirable layout, it is acceptable. Disjoint regions are
allowed for composite labels as long as the region for each
set in the composite label is continuous. Figure 14 shows
an unacceptable layout where there are two disjoint regions
for A.

4 Analysis

We begin by presenting an argument for the correctness of
our algorithm and sketching an outline for a formal proof.
Criteria for evaluating the drawing of Venn diagrams and
their construction algorithms are presented and applied in
the analysis of our algorithm.

4.1 Correctness of the Algorithm

Algorithm 1 is essentially a graph layout algorithm. We
cannot compare different layouts for an n-Venn diagram
produced by the same algorithm and state that one is cor-
rect while the other is incorrect. Figure 15 illustrates two
layouts for a 5-Venn diagram. The top diagram was con-
structed on a grid with Gs = 11 while the diagram at the
bottom was constructed on a grid with Gs = 25. Both lay-

A AB
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AB A

Figure 14: An example of an unacceptable layout forming
two disjoint regions labelled as A
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Figure 15: Two 5-Venn diagrams for different values of G s

outs are acceptable and valid. The different layouts can be
directly attributed to the different values of Gs that were
used.

We can define certain conditions that must be satisfied
to produce a valid layout. These conditions are:

1. A label may only be placed if its placement ensures
that a continuous area for each individual set described
by the label is formed. An example of an unacceptable
layout which breaks this condition is illustrated in Fig-
ure 14 where the individual set A is described by two
disjoint regions.

2. A layout is valid if, and only if, all the labels initially
in L have been placed on the grid and their placement
satisfies condition 1.

Condition 2 is the termination condition for the algo-
rithm. Assuming that condition 1 is satisfied, the algorithm
will terminate and the layout will be acceptable since con-
dition 1 ensures that labels are placed at valid positions.

The Tri contains exactly n(n+1)
2 labels. In order to

prove that the algorithm will terminate we must show that
there are enough valid positions so that the remaining
2n � 1� ( n(n+1)

2 ) labels can be placed. We can now di-
vide L into k subsets where 1� k � n. Initially Lk = fm2
N jC(m) = k;1 � m� 2n�1g.

After the construction of the Tri, Lk will contain ex-
actly tk elements that must still be placed on the grid where
tk =

�n
k

�
� (n�k+1). For n = 1 the Tri will contain 1(1+1)

2
labels which are equal to the total number of labels given
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by 21�1. This is also true for n = 2 and consequently the
algorithm will terminate for n = 1 and n = 2.

We are currently focusing on the construction of a
proof to show that for n � 1 and n 2 N there are enough
valid positions to place the remaining labels after the Tri
has been constructed. To complete this proof we must also
determine to what extend the value of Gs influences the
number and location of valid positions. Our experimental
results listed in Table 1 empirically shows that the algo-
rithm will terminate for 1 � n � 14, thus satisfying condi-
tion 2.

4.2 Criteria for Evaluating Venn Diagrams

We feel that the general criteria used to evaluate a graph
drawing and its layout [1] cannot be directly applied to
a Venn diagram. We propose the following criteria to be
used for evaluating a Venn diagram’s layout and its con-
struction algorithm:

Intersection Visibility: Ideally one would like to be able
to quickly and easily locate and interpret intersections.
Having too many small intersections located around
one another reduces visibility. Visibility can be further
increased if one can manipulate the individual sets in
the diagram.

Efficiency: Efficiency must address issues such as run-
time and minimization of area to be considered for
practical application in software.

Symmetry: The use of symmetrical shapes will lead to
better intersection visibility although it may impact on
the order of Venn diagrams that may be drawn.

4.3 Evaluation of the Incremental Construc-
tion Algorithm

Algorithm 1 is based on a mixture of grid and orthogonal
drawing techniques as it contains vertical and horizontal
segments placed on a grid. These segments influence the
visibility of intersections since segments spanning a num-
ber of grid positions are far easier to interpret and locate
than a segment contained within in a single grid position.
The binary labelling mechanism employed by the algo-
rithm makes it easy to manipulate groups of sets in the
Venn diagram by applying a mask on the grid to isolate
certain sets, thus increasing visibility. Figure 19 shows the
individual sets for the 5-Venn diagram in Figure 12. Fig-
ure 16 shows a Venn diagram obtained from Figure 13 after
applying a mask to isolate sets A and E.

We consider the algorithm to be efficient, although not
optimal in terms of area. Table 1 shows the optimal area
in grid positions for an n-Venn diagram compared to the
actual area used by Algorithm 1. A grid of 1000x1000 was
used to obtain the data in Table 1. The graph in Figure 17
clearly illustrates the exponential characteristics of the al-
gorithm.
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Figure 16: Venn diagram showing sets A and E together
with the area where they intersect with one another

n Optimal Area Total Area Optimized

1 1 1 1
2 3 3 3
3 7 7 7
4 15 16 16
5 31 38 34
6 63 84 73
7 127 172 156
8 255 411 366
9 511 1105 848
10 1023 1417 1289
11 2047 3648 2749
12 4095 5350 5314
13 8191 16178 12532

Table 1: Algorithm Performance

Our experiments have indicated that the area of the
Venn diagram can be reduced by limiting the grid size. Re-
ducing Gs can influence the total area used for construct-
ing the Venn diagram. The size of the grid also impacts on
the number of searches that must be carried out to locate a
valid position. Table 2 shows the number of grid positions
that were examined during the construction.

The shapes generated for the individual sets by our al-
gorithm are not symmetrical at all as can be seen in Fig-
ure 19. We chose this approach to generate higher order
Venn diagrams.

5 Conclusion

We presented a new algorithm for constructing Venn dia-
grams. We also proposed new criteria which can be applied
in the analysis of Venn diagram construction algorithms
and the layout produced by these algorithms. In doing so
we have joined two fields of study by applying graph draw-
ing concepts to construct and analyze Venn diagrams.

Empirical evidence seems to indicate that our algo-
rithm is general and that the construction of a Venn dia-
gram is limited only by the size of the grid which is used
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Figure 17: Optimal vs. actual area in terms of grid posi-
tions for different n-Venn diagrams
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Figure 18: The actual area compared to the area after ap-
plying Algorithm 3 to remove redundant labels for differ-
ent n-Venn diagrams
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Figure 19: The shapes of the individual sets for the initial
5-Venn diagram in Figure 12

n Gs Number of Searches

1 1000 996004
2 1000 996004
3 1000 3992008
4 1000 15980044
5 1000 48976108
6 1000 127060312
7 1000 298986828

Table 2: Grid Positions Searched

during the implementation of the algorithm. Our analysis
have also shown that the constructed diagram can be ma-
nipulated to extract certain information making it of prac-
tical use in applications. We are currently working on a
proof to show that the algorithm is general and that it will
terminate for all values of n.
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